
Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Efficiency and Complexity Comparison of Red-Black

Trees and AVL Trees in Data Structure

Juan Oloando Simanungkalit - 13524032

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

juanoloando.s@gmail.com , 13524032@std.stei.itb.ac.id

Abstract— This paper addresses the challenge of efficiently

handling dynamic data operations, such as searching, deleting,

and insertion, within tree-based data structures, specifically

focusing on self-balancing binary search trees. The problem lies

in understanding the trade-offs between different self-balancing

algorithms to select the most suitable one for various workloads.

The method employed involves a theoretical analysis and

practical evaluation of two prominent self-balancing binary

search tree algorithms: Red-Black Trees and AVL Trees. The

paper compares their structural properties, balancing strategies,

and operational efficiencies, particularly focusing on insertion,

deletion, and search operations. The purpose of this paper is to

provide a comprehensive understanding of the efficiency and

complexity trade-offs between Red-Black Trees and AVL Trees.

Keywords—AVL Tree, Red-Black Tree, Binary Seacrh Tree.

I. INTRODUCTION

In the world of data structures, trees play a crucial role due
to their accessibility in efficiently and hierarchically handling
data. While other data structures like arrays, linked list, or hash
tables offer various functionalities, trees hold a highly
significant position in data structures due to their proficiency in
hierarchical and efficient data management. Getting into the
details, self-balancing binary search trees stand out by
addressing efficiency concerns in dynamic operations like
searching, deleting, and insertion, solidifying trees role as a
primary foundation in numerous modern computer
applications.

There are various types of algorithms that operate on binary
search trees, with Red-Black Trees and AVL Trees being two
of the most well-known. While these two algorithms share
many similarities, they also have significant differences in how
they maintain balance and handle operations. AVL Trees
maintain a stricter balance by ensuring that the height
difference between the left and right subtrees does not exceed
one. This tight control often leads to quicker search times, but
may require more frequent rebalancing. On the other hand,
Red-Black Trees apply specific coloring rules to maintain a
looser balance, which typically results in faster insertions and
deletions due to fewer rotations.

This paper examines the trade-offs in efficiency and
complexity between Red-Black Trees and AVL Trees through
both theoretical analysis and practical evaluation. By
comparing their structural properties and balancing strategies,

the paper aims to identify which tree structure is better suited
for various workloads and applications scenarios. A thorough
understanding of these differences is essential for developers,
students who want to study these two algorithms for their
projects, and computer scientists in selecting the most
appropriate data structure to achieve optimal performance.

Figure 1.1 Binary Search Tree, AVL Tree, Red-Black
Tree

(DeepDiveIntoBinary)

II. THEORETICAL BASIS

A. Definition and Components of Tree

A tree can be understood as an undirected graph that
contains two crucial properties: it is entirely connected, and it
contains no circuits. Therefore, the defining characteristics of a
tree are its undirected nature, its connectivity, and the absence
of any cycles within in structures. Rooted tree is a tree which a
single node is chosen as the root, and its edges are given
direction, transforming it into a directed graph.

mailto:juanoloando.s@gmail.com
mailto:13524032@std.stei.itb.ac.id
https://youtu.be/6cc_qgGErwo?si=uRWlRQFULNuuV8kS

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Figure 2.1 Rooted Tree

(https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/202
4-2025/23-Pohon-Bag1-2024.pdf)

There are several terms or terminologies regarding trees
that one must understand to comprehend Binary Search Trees.
These terminologies are:

Figure 2.2 Basic Terminologies In Tree

(https://www.geeksforgeeks.org/introduction-to-tree-
data-structure/)

1. Parent Node : The nod which is an immediate
predecessor of a node is called the parent of that node.
Example: B is the parent node of D and E

2. Child Node : The node which is the immediate
successor of a node is called the child node of that
node. Example: D and E are the child nodes of B.

3. Root Node : The topmost node of a tree or the
noed which does not have any parent node is called the
root node. Referring to the figure above, A is the root
node.

4. Leaf Node : The nodes which do not have any
child nodes. Example: I,J,K,F,G, and H are the leaf
nodes of the tree.

5. Sibling : Children of the same parent node.
Example: D and E are called siblings.

6. Ancestor of a node : Any prodecessor nodes on the path
of the root to that node. Example: A and B are the
ancestor nodes of the node E.

7. Descendant : A node x is a descendant of
another node y if and only if y is an ancestor of x.

8. Level of a node : The count of edges on the path
from the root node to that node. The root node, {A},
has level 0.

9. Internal Node : A node with at least one child.

10. Subtree : Any node of the tree along with its
descendant.

B. Binary Search Tree

 A Binary Search Tree (BST) is a fundamental data
structure in computer science used to organize and store
data in a sorted manner. Each node in a BST has at most
two children: a left and a right child. The left child’s value
is always less than its parent node’s value, while the right
child’s value is greater than or equal to its parent’s value.
This structure allows for more efficient search, insertion,
and deletion operations on the data stored within the tree.

Figure 2.3 Binary Search Tree

(https://www.geeksforgeeks.org/binary-search-tree-
data-structure/)

C. AVL Tree

An AVL Tree is a prime example of a self-balancing binary
search tree. This innovative method was developed by
computer scientist Georgi Maximovich Adelson-Velsky and
Yevgeny Mikhailovich Landis in 1962.

An AVL tree is a type of binary search tree that maintains
balance by ensuring that for every node, the height difference
between its left and right subtrees is never more than one. If a
insertion or deletion operation causes this balance to be
disturbed, the tree automatically rebalances itself using AVL
rotations. This process guarantees efficient performance for all
tree operations.

The height of a subtree demonstrates how far the root is
from the lowest node. Therefore, a subtree that contains only a
root node has height of 0. A node’s balance factor (BF) is
calculated by subtracting the height of its left subtree from the
height of its right subtree. For any non-existent subtrees, their
height is considered to be -1 (which is one less than a subtree
with just a single node).

BF(node) = H(node.right) – H(node.left)

There are three cases:

1. If the balance factor is < 0, the node is classified as
left-heavy.

2. If the balance factor is > 0, the node is classified as
right-heavy

3. A balance factor of 0 indicates a balanced node.

In an AVL tree, the balance factor at each node must have a
value between -1, 0, or 1.

 AVL rotations become necessary when an insertion or
deletion operation causes the tree become unbalanced. There

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-Pohon-Bag1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/23-Pohon-Bag1-2024.pdf
https://www.geeksforgeeks.org/introduction-to-tree-data-structure/
https://www.geeksforgeeks.org/introduction-to-tree-data-structure/
https://www.geeksforgeeks.org/binary-search-tree-data-structure/
https://www.geeksforgeeks.org/binary-search-tree-data-structure/

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

are two types of rotations: right rotations and left rotations. The
image below illustrates a right rotation and left rotation. The
tree displayed the following nodes:

1. N: the root node where an imbalance was found

2. L: the child node of N

3. LL: the left child node of L

4. LR: the right child node of L

5. R: the right child node of N

 From the tree below, there is a key piece of information:

LL(1) < L(2) < LR(3) < N(4) < R(5)

Figure 2.4 Right Rotation

(https://www.happycoders.eu/algorithms/avl-tree-java/)

Figure 2.5 Left Rotation

(https://www.happycoders.eu/algorithms/avl-tree-java/)

 To keep an AVL Tree balanced, whenever a node is
inserted or deleted, the height and balance factor for all
affected nodes must be recalculated, moving upward from the
modification towards the tree’s root. If this process reveals a
node where the AVL invariant is broken (meaning its balance
factor falls outside the acceptable range of -1,0, or 1) then the
tree must be rebalanced. This rebalancing process falls into one
of four categories:

1. Balancing a left-heavy node:

a. Right rotation

b. Left-right rotation

2. Balancing a right-heavy node:

a. Left rotation

b. Right-left rotation

D. Red-Black Tree

 A red-black tree is a type of self-balancing binary search
tree designed to automatically keep itself balanced. Each node
within this tree is assigned either a red or black color. A
specific set or rules governs how these colors are arranged; for

instance, a red node cannot have red children. This color
scheme helps the tree maintain its balance.

 After nodes are inserted or deleted, complex algorithms are
used to verify that these rules are still being followed. If any
rules are violated, the tree is rebalanced by recoloring nodes
and performing rotations to restore the required properties.
These trees are often represented with NIL nodes, which are
empty leaf nodes without values. These NIL nodes are crucial
for the algorithms, particularly when determining the colors of
related nodes like uncles or siblings.

Figure 2.6 Red-Black Tree

(https://www.happycoders.eu/algorithms/red-black-tree-
java/)

 A red-black tree maintains balance through a set of strict
rules governing node colors. Each node is either red or black,
and all NIL leaves are strictly black. A critical rule requires
that a red node may not have red children, and furthermore,
every path from given node to its descendant leaves must
contain an identical count of black nodes. While the root is
typically black, the particular rule is often omitted in literature
because its observance is often enforced by other rules. The
specific rule’s implementation typically results in only a minor
code difference in operations.

 The height of a red-black tree is defined as the maximum
number of nodes from the root to a NIL leaf, excluding the root
itself. A significant property derived from the rules is that the
longest path from the root to any leaf is at most twice the
length of the shortest path.

 Inserting and deleting nodes in a red-black tree largely
follows the standard procedures for binary search trees.
However, after these operations, the tree’s observance to its
red-black rules must be checked. if any rules are violated, the
tree is rebalanced by recoloring nodes and performing
rotations. These rotations function identically to those used in
AVL trees.

III. COMPARISON OF AVL TREE AND RED BLACK TREE

Both AVL tree and red-black tree are self-balancing binary

search trees that guarantee a worst-case height of O(log n) for

n nodes, which means operations like search, insertion, and

deletion will take at most O(log n) time. While AVL tree

maintains a stricter balance, often leading to faster search

times, red-black tree employs a looser balancing strategy using

color rules. This difference in balancing strictness is key to

https://www.happycoders.eu/algorithms/avl-tree-java/)
https://www.happycoders.eu/algorithms/avl-tree-java/)
https://www.happycoders.eu/algorithms/red-black-tree-java/
https://www.happycoders.eu/algorithms/red-black-tree-java/

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

understanding why the more complex red-black tree is still

relevant, despite the simpler implementation of AVL tree. The

comparison will focus on two primary primitive operations:

insertion and deletion. The tool to used to visualize these two

algorithms is Python.

A. Algorithm for AVL Tree

Figure 3.1 Create a Tree Node (AVL Tree)

(https://www.programiz.com/dsa/avl-tree)

 The TreeNode class serves as the foundational building
block for constructing an AVL tree. Each TreeNode object
contains four essential attributes: a key to store the node’s
value, left and right pointers to reference its child nodes
(initialized as None), and a height value (initialized to 1) that
tracks the depth of the subtree rooted at that node. The key
determines the node’s position within the tree, adhering to the
binary search tree property where all keys in the left subtree are
smaller than the node’s key, and all keys in the right subtree are
larger. The height attribute is critical for maintaining the AVL
tree’s balance, as it enables the calculation of the balance
factor—the difference between the heights of the left and right
subtrees. By ensuring this balance factor remains within the
range of -1,0,or 1, the AVL tree guarantees efficient operations
with logarithmic time complexity. When a new node is created,
it starts as a leaf node with no children, and its height is set to
1.

Figure 3.2 Algorithm for Insertion (AVL Tree)

(https://www.programiz.com/dsa/avl-tree)

The AVL tree insertion algorithm is a carefully designed
process aimed at maintaining the tree's balance as new nodes
are introduced. It begins with the standard binary search tree
(BST) insertion method, where the algorithm recursively
searches for the new node's appropriate position. If the
designated spot is empty, a new node is created. Conversely, if
the spot is occupied, the new key is compared with the current
node's key, and the insertion proceeds recursively into either
the left or right subtree to uphold the BST property.

Once the new node is placed, the algorithm updates the
height of the current node by adding one to the maximum
height of its child subtrees. This height management is vital for
the subsequent balance checks. The balance factor is then
computed by subtracting the height of the right subtree from
that of the left subtree. Should this balance factor fall outside
the acceptable range of -1 to 1, the tree undergoes rebalancing
through specific rotations. There are four distinct rotation
scenarios, each addressing a particular type of imbalance: a
right rotation for a left-left imbalance, a left-right rotation for a
left-right imbalance, a left rotation for a right-right imbalance,
and a right-left rotation for a right-left imbalance. These
rotations effectively reorganize the tree's structure while
preserving its BST properties, thereby ensuring that the height
difference between any node's subtrees never exceeds one. The
algorithm concludes by returning the modified subtree,
allowing these balancing adjustments to propagate up the
recursive call stack and maintain overall tree stability. This
combination of recursive insertion, height tracking, and
conditional rotations guarantees that AVL tree operations
consistently achieve O(log n) time complexity.

https://www.programiz.com/dsa/avl-tree
https://www.programiz.com/dsa/avl-tree

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

Figure 3.3 Algorithm for Deletion (AVL Tree)

(https://www.programiz.com/dsa/avl-tree)

Deletion within an AVL tree is managed by a structured
algorithm that strictly upholds the tree's balanced configuration
during node removal. The process initiates by adhering to
standard binary search tree (BST) deletion principles,
recursively seeking the node targeted for removal. If the node
is not present (i.e., the root is null), the operation simply
terminates. Upon locating the desired node, its removal is
handled based on its child count: nodes with no left child are
replaced by their right child; those with no right child are
replaced by their left child; and nodes possessing both children
necessitate finding their in-order successor (the smallest value
in the right subtree), transferring its value to the current node,
and then recursively deleting that successor from the right
subtree. This strategy ensures the BST property remains
preserved.

Subsequent to the node's removal, the algorithm undertakes
crucial rebalancing adjustments. It first updates the height of
the affected node, computing it as one plus the maximum
height of its remaining child subtrees. The balance factor is
then derived by comparing the heights of the left and right
subtrees. Should an imbalance manifest—that is, if the balance
factor exceeds 1 or falls below -1—the algorithm triggers the
appropriate rotation(s) to restore equilibrium. Four distinct
rotation patterns address specific imbalances: a simple right
rotation for left-left scenarios, a left-right double rotation for
left-right cases, a simple left rotation for right-right situations,
and a right-left double rotation for right-left imbalances. These
rotations are meticulously designed to maintain both the BST
property and the AVL balance condition while minimizing
structural alteration. The algorithm concludes by returning the
potentially restructured subtree, allowing these changes to
propagate upward through the recursive call stack to ensure
balance across the entire tree. This integrated approach—
combining recursive node removal with height management
and conditional rotations—guarantees that AVL tree operations
consistently achieve optimal O(log n) time complexity and
retain their balanced characteristics.

For example, the initial AVL tree contains the following
nodes: [50,12,52,10,25,61,8,11]. The objective is to insert the
value [30] into this tree while maintaining the AVL property.

Figure 3.4 Initial and Final AVL Tree Insertion

The insertion of the value 30 into the initial AVL tree [50,
12, 52, 10, 25, 61, 8, 11] follows a systematic process to
maintain the tree's balanced structure. The algorithm begins by
performing a standard BST insertion, traversing from the root
(50) to the appropriate position. Since 30 is less than 50 but
greater than 12 and 25, it is inserted as the right child of node
25. Following insertion, the heights of affected nodes (30, 25,
12, and 50) are recalculated to reflect the structural changes.

The critical rebalancing phase occurs when checking the
balance factors after insertion. Node 12, with a balance factor
of 2 (left subtree height of 3 minus right subtree height of 1),
becomes unbalanced. This specific imbalance represents a
Right-Right (RR) case, where the right subtree of node 12's
right child (25) contains the newly inserted node (30). To
correct this, a left rotation is performed on node 12. The
rotation restructures the tree by making node 25 the new parent
of node 12, with node 12 becoming the left child of node 25
and node 30 remaining as the right child. This rotation reduces
the height difference between subtrees while preserving the
BST property.

The rotation successfully restores balance to the tree,
maintaining the AVL property where no node has a balance
factor exceeding ±1. The final tree structure demonstrates how
AVL trees dynamically adjust through rotations to ensure
optimal performance, with all operations maintaining O(log n)
time complexity. This example illustrates the essential self-
balancing mechanism of AVL trees, where insertions are
followed by height updates and necessary rotations to preserve
the tree's balanced state.

Figure 3.5 Initial and Final AVL Tree Deletion

https://www.programiz.com/dsa/avl-tree

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

The deletion of node 12 from the given AVL tree, which
initially contains [50, 12, 52, 10, 25, 61, 8, 11, 30], follows a
precise procedure to ensure the tree remains balanced. Since
node 12 has both a left child (10) and a right child (25), it is
replaced by its in-order successor, which is node 25.
Subsequently, node 25 is removed from its original location.
This causes a structural adjustment where node 25 takes node
12's former position, with node 10 becoming its left child, and
nodes 11 and 30 relocating within the right subtree.

After this initial deletion, the algorithm proceeds to update
the heights of affected nodes and check their balance factors. A
potential imbalance often arises at node 50 (the tree's root)
because its left subtree's height has decreased. The balance
factor for node 50 is calculated by subtracting the height of its
right subtree (rooted at 52) from the height of its left subtree
(now rooted at 25). If this balance factor moves outside the
acceptable range of ±1, rotations are then initiated to restore
balance.

In this specific example, two main scenarios might
necessitate rotation:

• Should node 50 become left-heavy (balance factor
greater than 1), a right rotation would be performed.
This action would promote node 25 to the new root,
with node 50 becoming its right child.

• If, however, node 25's right subtree becomes too
heavy (balance factor less than -1), a left-right double
rotation might be required. This involves first a left
rotation on node 25's right child (node 30), followed
by a right rotation on node 25 itself.

These corrective rotations are crucial for maintaining the
AVL property, ensuring that no node's balance factor deviates
beyond ±1. This preservation of balance is key to upholding the
tree's efficient O(log n) time complexity for all operations. The
precise rotations employed are determined by the exact height
differences observed after the deletion, systematically restoring
balance while fully retaining the binary search tree property.

B. Algorithm for Red-Black Tree

Figure 3.6 Create a Tree Node (Red Black Tree)

(https://www.programiz.com/dsa/red-black-tree)
The fundamental structure of a Red-Black tree's Node class

is quite similar to that of an AVL tree, with the key distinctions
being the inclusion of two additional attributes: parent and
color. In an AVL tree, each node typically stores its key,
pointers to its left and right children, and a height attribute.

This height is crucial for maintaining the tree's balance by
ensuring that the height difference between any left and right
subtree does not exceed one.

On the other hand, the Red-Black Tree's Node class
contains an item (or key), left and right child pointers, a parent
pointer, and a color attribute (where '1' often denotes red and '0'
signifies black). The parent pointer is vital for efficient
movement within the tree and for rebalancing operations, as it
allows access to a node's ancestor. The color attribute,
meanwhile, is essential for enforcing the Red-Black Tree's
specific balancing rules: primarily, that no two consecutive red
nodes are allowed (meaning a red node cannot have a red
child), and that every path from the root to any leaf must
contain an identical count of black nodes.

 These constraints work together to ensure that the Red-
Black Tree remains approximately balanced. This balancing is
less strict than that of an AVL tree, which typically leads to
fewer structural adjustments (rotations) during insertions and
deletions. Therefore, while AVL trees prioritize strict height
balance for potentially faster search operations, Red-Black
Trees are optimized for more efficient modifications (insertions
and deletions) by relying on these color-based rules. The
inclusion of the parent and color attributes in the Red-Black
Tree's node structure is fundamental to its distinct self-
balancing mechanism, setting it apart from the AVL tree's
height-centric approach.

Figure 3.7 Algorithm for Insertion (Red-Black Tree)

(https://www.programiz.com/dsa/red-black-tree)
The insertion process in a Red-Black Tree consists of two

fundamental phases: standard binary search tree insertion
followed by tree rebalancing to maintain the tree's critical
properties. The process begins by creating a new node
containing the key value, which is initialized as red (color = 1)
with its left and right children set to null (TNULL). The
algorithm then traverses the tree from the root downward,
comparing the new node's value with existing nodes to
determine its proper position according to BST rules - moving
left when the new value is smaller and right when it is larger.

Once the appropriate position is found, the new node is
linked to its parent. Special cases are handled immediately: if
the new node becomes the root, it is recolored black to satisfy

https://www.programiz.com/dsa/red-black-tree
https://www.programiz.com/dsa/red-black-tree

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

the root property, and if the parent is the root (meaning no
grandparent exists), the insertion completes without further
adjustments. For all other cases, the fix_insert method is
invoked to address potential violations of Red-Black Tree
properties, primarily the red-red conflict where a red node has a
red parent.

The fix_insert method systematically resolves these
violations through a combination of recoloring and rotations.
Three main scenarios are considered: when the uncle node is
red (Case 1), requiring simple recoloring of the parent, uncle,
and grandparent; when the new node forms a triangle
configuration with its parent and grandparent (Case 2),
necessitating an initial rotation to convert it to Case 3; and
when they form a straight line (Case 3), resolved with a single
rotation and recoloring. These operations ensure the tree
maintains all essential properties: the root remains black, no
two red nodes are adjacent, and all paths from any node to its
descendant leaves contain the same number of black nodes,
thereby guaranteeing balanced performance with O(log n) time
complexity for all operations. Similarly, after a node is deleted,
the tree will attempt to rebalance itself.

Using the same example as the AVL tree, the value 30 will
be inserted into the initial tree (50, 12, 52, 10, 25, 61, 8, 11).

Figure 3.8 Initial and Final Red Black Tree Insertion

To integrate the value 30 into the Red-Black Tree (initially
containing nodes [50, 12, 52, 10, 25, 61, 8, 11]), a structured
procedure is followed to uphold the tree's crucial balancing
characteristics. Node 30 is initially added as a red node,
correctly positioned as the right child of 25 according to
standard binary search tree rules. This immediate placement,
however, promptly results in a red-red violation, as both node
30 and its parent 25 are red.

To address this conflict, the tree assesses the "uncle" of
node 30—the sibling of its parent 25. This node, 10, is black.
Given the black uncle, the tree initiates a sequence of rotations
and recoloring operations. Initially, a left rotation is performed
at node 25, which converts the right-heavy subtree into a linear
arrangement. Subsequently, nodes are recolored: node 30 turns
black, and node 12 changes to red. This is then followed by a
right rotation at node 12, aiming to fully restore the tree's
balance.

The resulting structure successfully upholds all Red-Black
Tree properties: the root (50) remains black, no two red nodes

are adjacent, and every path from the root to any leaf contains
an equal count of black nodes. This entire procedure
exemplifies the Red-Black Tree's efficient self-balancing
capability through judicious rotations and color adjustments
post-insertion. Such dynamic reorganization ensures optimal
O(log n) time complexity for all operations and safeguards the
tree's structural integrity, thereby averting the performance
decline that an unbalanced binary search tree might experience.

Figure 3.9 Initial and Final Red Black Tree Deletion

The removal of node 12 from the Red-Black Tree adheres
to a carefully organized process designed to preserve the tree's
essential characteristics. Initially, the algorithm identifies node
12, which possesses two children (node 10 and node 25). Given
that node 12 is red and its children are black, the deletion can
be simplified by substituting node 12 with its in-order
successor, node 25. Following the removal of node 12, node 25
is promoted to assume its former position, while node 10 is
retained as the left child.

This structural alteration, however, introduces a potential
imbalance that necessitates correction through recoloring and,
if required, rotations. The tree then executes a color flip: node
25 changes from black to red, and node 10 similarly changes
from black to red, thereby maintaining the crucial black height
property. If this recoloring were to result in a red-red violation
between node 10 and its new parent, subsequent rotations
would be performed for correction. In this particular instance,
however, no additional rotations are necessary, as node 10's
parent (node 25) remains black.

The resulting tree successfully maintains all Red-Black
properties: the root (50) remains black, no red nodes are
adjacent, and all paths from the root to the leaves contain an
identical number of black nodes.

C. Comparison of Two Algorithms

Red-Black Trees and AVL Trees represent two distinct

approaches to self-balancing binary search trees, each with

unique advantages tailored to different computing scenarios.

The fundamental difference lies in their balancing mechanisms

- Red-Black Trees employ a color-coding system (red or black

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

nodes) with specific rules about node coloration and black

node distribution, while AVL Trees maintain strict height

balance through precise balance factors (-1, 0, or 1) for each

node. This structural divergence leads to significant

performance variations: AVL Trees, with their stricter

balancing, guarantee a more optimal tree height of

approximately 1.44 log(n) compared to Red-Black Trees' 2

log(n), making AVL Trees approximately 20-25% faster for

lookup operations. However, this advantage comes at a cost -

AVL Trees typically require more frequent and complex

rotations during insertions and deletions, sometimes needing

O(log n) rotations per operation, whereas Red-Black Trees

usually require at most two rotations and often just simple

recoloring. Storage requirements also differ substantially, with

Red-Black Trees needing only a single bit per node for color

information, while AVL Trees must store integer values

(typically 2-4 bytes) for height or balance factor data. These

characteristics lead to distinct application domains: Red-Black

Trees dominate in systems requiring frequent modifications,

such as language libraries (C++'s map/set, Java's TreeMap)

and filesystem implementations, where their efficient

insertion/deletion performance outweighs slightly slower

searches. Conversely, AVL Trees excel in read-intensive

environments like database indexing and real-time systems

where maximum search speed is crucial and the data changes

less frequently. Both maintain O(log n) time complexity for all

operations, but their different balancing philosophies make

each uniquely suited to specific performance requirements in

computer science applications. The following table presents a

summary of the distinctions between the two programs.

Comparison

Indicators

AVL Tree Red-Black Tree

Balance

Factor

Each node has a

balance factor

whose value is

between -1,0, or 1

It does not have a

balance factor

Balancing Take more

processing for

balancing

Take less processing

for balancing. The

maximum number of

rotations is two.

Lookups AVL Trees

provide faster

lookups than Red-

Black Trees

because they are

more strictly

balanced

Red-Black Tree has

fewer lookups because

they are not strictly

balanced.

Color There is no color

of the node

The color of the node is

either Red or Black

Insertion and

Deletion

AVL Trees

provide complex

insertion and

deletion operations

as more rotations

are done due to

Red-Black Trees

provide faster insertion

and deletion operations

than AVL Trees as

fewer rotations are

done due to relatively

relatively strict

balancing

relaxed balancing

Storage AVL Trees store

balance factors or

heights with each

node. Therefore,

requiring storage

for an integer per

node

Red-Black Tree

requires only 1 bit of

information per node

Searching AVL Trees

provide efficient

searching

Red-Black Trees does

not provide efficient

searching

Applications For indexing large

records in

databases, for

searching in large

databases, etc.

To implement finite

maps, to implement

Java packages, to

implement Standard

Template Libraries

(STL) in C++:

multiset,map,multimap,

etc.

APPENDIX

 Source code: https://github.com/kalitz23/Makalah-

Matdis.

ACKNOWLEDGMENT

 I extend my deepest gratitude to Almighty God for the

blessings and guidance that allowed me to complete this paper.

I also wish to thank my friends and family for their unwavering

support during the preparation of this paper. Special thanks are

due to Dr. Rinaldi and Mr. Arrival Dwi Sentosa, M.T., our

Discrete Mathematics lecturers, whose profound knowledge

and insights were instrumental in this work.

REFERENCES

[1] Code Visualizer, "Red-Black Tree," [Online]. Available:

https://www.programiz.com/dsa/red-black-tree. [Accessed 20

June 2025].

[2] Code Visualizer, "AVL Tree," [Online]. Available:

https://www.programiz.com/dsa/avl-tree. [Accessed 19 June

2025].

[3] GeeksforGeeks, "Red Black Tree vs AVL Tree," 10 November

2022. [Online]. Available:

https://www.geeksforgeeks.org/dsa/red-black-tree-vs-avl-tree/.

[Accessed 18 June 2025].

[4] HappyCoders, "Algorithm Red-Black Tree," [Online]. Available:

https://www.happycoders.eu/algorithms/red-black-tree-java/.

[Accessed 19 June 2025].

[5] HappyCoders, "AVL Tree Algorithm," [Online]. Available:

https://www.happycoders.eu/algorithms/avl-tree-

java/#AVL_Tree_Implementation_in_Java. [Accessed 19 June

2025].

[6] GeeksforGeeks, "Binary Search Tree," 19 June 2025. [Online].

Available: https://www.geeksforgeeks.org/binary-search-tree-

data-structure/. [Accessed 20 June 2025].

https://github.com/kalitz23/Makalah-Matdis
https://github.com/kalitz23/Makalah-Matdis
https://www.programiz.com/dsa/red-black-tree
https://www.programiz.com/dsa/avl-tree
https://www.geeksforgeeks.org/dsa/red-black-tree-vs-avl-tree/
https://www.happycoders.eu/algorithms/red-black-tree-java/
https://www.happycoders.eu/algorithms/avl-tree-java/#AVL_Tree_Implementation_in_Java
https://www.happycoders.eu/algorithms/avl-tree-java/#AVL_Tree_Implementation_in_Java
https://www.geeksforgeeks.org/binary-search-tree-data-structure/
https://www.geeksforgeeks.org/binary-search-tree-data-structure/

Makalah IF1220 Matematika Diskrit, Semester II Tahun 2024/2025

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Jakarta, 20 Juni 2025

Juan Oloando 13524032

